Search results for "Tissue enginering"
showing 2 items of 2 documents
Long-Term in vivo Evaluation of Orthotypical and Heterotypical Bioengineered Human Corneas.
2020
Purpose: Human cornea substitutes generated by tissue engineering currently require limbal stem cells for the generation of orthotypical epithelial cell cultures. We recently reported that bioengineered corneas can be fabricated in vitro from a heterotypical source obtained from Wharton’s jelly in the human umbilical cord (HWJSC). Methods: Here, we generated a partial thickness cornea model based on plastic compression nanostructured fibrin-agarose biomaterials with cornea epithelial cells on top, as an orthotypical model (HOC), or with HWJSC, as a heterotypical model (HHC), and determined their potential in vivo usefulness by implantation in an animal model. Results: No major side effects …
Tubular scaffold for vascular tissue engineering application
2010
A critical obstacle in tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions into the host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication “highway”. Another goal in this research field is the possibility to tune the biodegradability of the scaffold. After implantation, the scaffold has to be gradually replaced by cells and extra cellular matrix and it is crucial that this replacement takes place with an appropriate dynamics. A premature degradation, in fact, could lead to a collapse of the struct…